IC 1. The pressure <i>p</i> of an ideal gas is given by t	DEAL GASES the expression	AKITAF MIAITMOOD (0535-4281/59 M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITE teacher_786@hotmail.com
(a) Explain the meaning of the symbol $\langle c^2 \rangle$	$p = \frac{1}{3} \frac{Nm}{V} < c^2 > .$	
 (b) The ideal gas has a density of 2.4 kgm⁻³ (i) Determine the root-mean-square (r.m.s) 	at a pressure of 2.0×10^5 Pa and a te .) speed of the gas atoms at 300 K.	emperature of 300 K.
(ii) Calculate the temperature of the gas fo in (i).	r.m.s. speed = r the atoms to have an r.m.s. speed th	mat is twice that calculated $m s^{-1}$ [3]
2. (a) (i) The kinetic theory of gases leads to	temperature =	K [3]
Explain the significance of the quant	$m < c^2 > = \frac{3}{2}kT.$ tity $\frac{1}{2}m < c^2 > .$	

....

. . .

IDEAL GASES

3. If an object is projected vertically upwards from the surface of a planet at a fast enough speed, it can escape the planet's gravitational field. This means that the object can arrive at infinity where it has zero kinetic energy. The speed that is just enough for this to happen is known as the escape speed.
(a) (i) By equating the kinetic energy of the object at the planet's surface to its total gain of potential

energy in going to infinity, show that the escape speed v is given by

$$v^2 = \frac{2GM}{R},$$

where R is the radius of the planet and M is its mass.

(ii) Hence show that

 $v^2 = 2Rg,$

where g is the acceleration of free fall at the planet's surface.

(b) The mean kinetic energy *E*k of an atom of an ideal gas is given by

$$E_{k} = \frac{3}{2}kT$$

where k is the Boltzmann constant and T is the thermodynamic temperature. Using the equation in (a)(ii), estimate the temperature at the Earth's surface such that helium atoms of mass 6.6×10^{-27} kg could escape to infinity.

You may assume that helium gas behaves as an ideal gas and that the radius of Earth is 6.4×10^6 m.

temperature = K [4]

4. (a) Outline an experiment which demonstrates that the molecules in a gas are in perpetual random motion.

[3]

	IDEAL GASES		Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
			[3]
(b) The pressure p of an ideal gas is	given by both of the follo	owing equations.	
$p = \frac{Nm}{2}$	$\frac{1 < c^{-} >}{3V}$	$p = \frac{NKT}{V}$	
(i) Use the equations to show that to the temperature T .	the average translational	kinetic energy of a	molecule is proportional
			[3]
(ii) Calculate the average kinetic energy	gy of a molecule of an ide	eal gas at a tempera	ture of 27 °C.
(iii) Explain why the answer to (ii)	is independent of the ma	kinetic energ ass of the gas molec	y = J [2] cules.
			[2]
(iv) A laboratory contains 2600 mo of all the molecules of air in the	ol of air at a temperature of all of air at a temperature of all aboratory.	of 27 °C. Calculate	the total kinetic energy
		kinetic energy =	= J [2]

	IDEAL GASES	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB)
5. (a)	The equation	teacher_786@hotmail.com
(4)	$nV = constant \times T$	
	$pv = constant \times r$	
	temperature <i>T</i> .	vin (thermodynamic)
	State two conditions for the equation to be valid.	
	1	
	2	
(b)	A gas cylinder contains 4.00×10^4 cm ³ of hydrogen at a pressure of temperature of 290 K.	of 2.50×10^7 Pa and a
	The cylinder is to be used to fill balloons. Each balloon, v 7.24×10^3 cm ³ of hydrogen at a pressure of 1.85×10^5 Pa and a term	vhen filled, contains nperature of 290 K.
	Calculate, assuming that the hydrogen obeys the equation in (a),	
	(i) the total amount of hydrogen in the cylinder,	
	amount =	mol [3]
	(ii) the number of balloons that can be filled from the cylinder.	

6.		IDEAL GASES	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com		
(a)	Exp	plain what is meant by the Avogadro constant.			
			[2]		
(b)	Arg A m	on-40 (⁴⁰ Ar) may be assumed to be an ideal gas. hass of 3.2g of argon-40 has a volume of 210 cm ³ at a temperature	e of 37 °C.		
	Determine, for this mass of argon-40 gas,				
	(i)	the amount, in mol,			
		amount =	mol [1]		
	(ii)	the pressure,			
	.,				
		pressure =	Pa [2]		
	(iii)	the root-mean-square (r.m.s.) speed of an argon atom.			
		r.m.s. speed =	m s ⁻¹ [3]		
		$\{Q. 2/41\}$	& 42 Variant/ June 2014}		

(b) Two cylinders A and B are connected by a tube of negligible volume, as shown in Fig. 2.1.

Fig. 2.1

Initially, tap T is closed. The cylinders contain an ideal gas at different pressures.

(i) Cylinder A has a constant volume of 2.5×10^3 cm³ and contains gas at pressure 3.4×10^5 Pa and temperature 300 K.

Show that cylinder A contains 0.34 mol of gas.

IDEAL GASES	MISC (FIJSICS), MCS, MDA-H, D.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
Cylinder B has a constant volume of 1.6×10^3 cm ³ and contains When tap T is opened, the pressure of the gas in both cylinders No thermal energy enters or leaves the gas.	s 0.20 mol of gas. is 3.9 × 10 ⁵ Pa.
Determine the final temperature of the gas.	
temperature =	K [2] [3]
$\{Q. 2/41 \&$	43 Variant/ June 2013 }
An ideal gas is assumed to consist of atoms or molecules that beha	ave as hard, identical
spheres that are in continuous motion and undergo elastic collisions.	
State two further assumptions of the kinetic theory of gases.	
I	
٥ ٥	
۷	
	[2]
Helium-4 $\binom{4}{2}$ He) may be assumed to be an ideal gas.	
(i) Show that the mass of one atom of helium-4 is 6.6×10^{-24} g.	
	IDEAL GASES Cylinder B has a constant volume of 1.6 × 10 ³ cm ³ and contains When tap T is opened, the pressure of the gas in both cylinders No thermal energy enters or leaves the gas. Determine the final temperature of the gas. Determine the final temperature of the gas. Temperature =

	IDEAL GASES	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com		
(ii)	(ii) The mean kinetic energy $E_{\rm K}$ of an atom of an ideal gas is given by the expression			
	$E_{\rm K} = \frac{3}{2} kT.$			
	Calculate the root-mean-square (r.m.s.) speed of a helium-4 aton 27 °C.	n at a temperature of		
	r.m.s. speed =	m s ⁻¹ [3] & 43 Variant/ June 2016}		
9. (a)	State what is meant by			
	(i) the Avogadro constant N_A ,			
	(ii) the mole.	[1]		
/1 \		[2]		
(b)	A container has a volume of $1.8 \times 10^{\circ}$ cm ³ .			
	The ideal gas in the container has a pressure of 2.0×10^{7} Pa at a temp	erature of 17 °C.		
	Show that the amount of gas in the cylinder is 150 mol.			
		[1]		

			IDEAL GASES	Akhtar Mahmoo M.Sc.(Physics), MCS MIS, DCE, DAS/400 teacher_786@hotmat	d (0333-4) 5, <i>MBA-IT</i> , 5 <i>De(IBM), O</i> il.com	281759) B.Ed. CP(PITB)
(c)	Ga	s mole	cules leak from the container in (b) at a constant rate of 1.5×10^{-1}	10 ¹⁹ s ^{−1} .		
	In a	a time <i>t</i>	, the amount of gas in the container is found to be reduced by	/ 5.0%.		
	Ca	lculate				
	(i)	the p	ressure of the gas after the time <i>t</i> ,			
(ii)	the	e time	pressure =		Pa	[2]
 Q.1	to C	Q. 5) To	$t = \dots {Q. 2/4}$ Marking Key	42 Variant/ J	s June 20	s [3] 016}
0.6	. { <i>R</i>	ef.: 0. 2	/41 & 42 Variant/ June 2014}			
(a)	the in 1	numbe 2 g of c	r of atoms carbon-12		M1 A1	[2]
(b)	(i)	amour	nt = 3.2/40 = 0.080 mol		A1	[1]
	(ii)	$pV = r$ $p \times 21$ $p = 9.$ (a)	hRT 0 × 10 ⁻⁶ = 0.080 × 8.31 × 310 8 × 10 ⁵ Pa <i>to not credit if T in °C not K</i>)		C1 A1	[2]
(iii)	either	$pV = 1/3 \times Nm < c^{2} >$ $N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27} (= 6.64 \times 10^{-26})$ $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times c^{2} > = 1.93 \times 10^{5}$; ² >	C1 C1	
		or	$c_{\rm RMS} = 440 \text{ m s}^{-1}$ $Nm = 3.2 \times 10^{-3}$		A1	[3]
		0,	9.8 × 10 ⁵ × 210 × 10 ⁻⁶ = $1/3 \times 3.2 \times 10^{-3} \times \langle c^2 \rangle$ < $c^2 > = 1.93 \times 10^5$ CPMS = 440 m s ⁻¹		(C1) (A1)	
		or	$1/2 \ m < c^2 > = 3/2 \ kT$ $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310$ $< c^2 > = 1.93 \times 10^5$ Cours = 440 m s^{-1}		(C1) (C1)	
			(if T in °C not K award max 1/3, unless already penalised in	(b)(ii))	(***)	

	IDEAL GASES	Akhtar Mahmood (0333- M.Sc.(Physics), MCS, MBA-II MIS, DCE, D AS/400e(IBM), teacher_786@hotmail.com	- 4281759) F, B.Ed. OCP(PITB)
7. {Ro (a) c /a	ef.: <i>Q.</i> 2/41 & 43 Variant/ June 2013} beys the equation $pV = \text{constant} \times T$ or $pV = nRT$ by <i>V</i> and <i>T</i> explained t all values of <i>p</i> , <i>V</i> and <i>T</i> /fixed mass/ <i>n</i> is constant	M1 A1 A1	[3]
(b) (i) $3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ n = 0.34 mol	M1 A0	[1]
(ii) for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ T = 360 K	C1 A1	[2]
8. { <i>Ra</i> (a) e	<i>ef.: Q. 2/41 & 43 Variant/ June 2016</i> } .g. time of collisions negligible compared to time between collisions		
	no intermolecular forces (except during collisions)		
	random motion (of molecules)		
	large numbers of molecules		
	(total) volume of molecules negligible compared to volume of conta or	ining vessel	
	average/mean separation large compared with size of molecules	PO	[0]
		DZ	[2]
(b) (i) mass = 4.0 / (6.02×10^{23}) = 6.6×10^{-24} g		
	mass = $4.0 \times 1.66 \times 10^{-27} \times 10^3 = 6.6 \times 10^{-24} \text{ g}$	B1	[1]
(i	i) $\frac{3}{2}kT = \frac{1}{2}m < c^2 >$	C1	
	$\frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = \frac{1}{2} \times 6.6 \times 10^{-27} \times \langle c^2 \rangle$		
	$< c^{2} > = 1.88 \times 10^{6} (m^{2} s^{-2})$	C1	
	r.m.s. speed = $1.4 \times 10^3 \text{ m s}^{-1}$	A1	[3]
9. { <i>Ra</i> (a) (<i>f.: Q. 2/42 Variant/ June 2016</i> }) number of <u>atoms/nuclei</u> in 12 g of carbon-12	B1	[1]
(i	amount of substance	M1	
	containing N_A (or 6.02 × 10 ²³) particles/molecules/atoms or which contains the same number of particles/atoms/molecules as the	oere	
	are atoms in 12g of carbon-12	A1	[2]

IDEAL GASES

Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com

(b) /	рV	= nRT		
	2.0	$\times 10^7 \times 1.8 \times 10^4 \times 10^{-6} = n \times 8.31 \times 290$, so $n = 149$ mol or 150 mol	A1	[1]
(c)	(i)	V and T constant and so pressure reduced by 5.0% pressure = $0.95 \times 2.0 \times 10^7$	C1	
		or		
		calculation of new n (= 142.5 mol) and correct substitution into $pV = nRT$	(C1)	
		pressure = 1.9×10^7 Pa	A1	[2]